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Abstract

The generation of two-dimensional thermal convection induced simultaneously by gravity and high-frequency

vibration in a bounded rectangular enclosure or in a layer is investigated theoretically and numerically. The horizontal

walls of the container are maintained at constant temperatures while the vertical boundaries are thermally insulated,

impermeable and adiabatic. General equations for the description of the time-averaged convective flow and, within this

framework, the generalized Boussinesq approximation are formulated. These equations are solved using a spectral

collocation method to study the influence of vibrations (angle and intensity). Hence, a theoretical study shows that

mechanical quasi-equilibrium (i.e., state in which the averaged velocity is zero but the oscillatory component is in

general non-zero) is impossible when the direction of vibration is not parallel to the temperature gradient. In the other

case, it is proved that the mechanical equilibrium is linearly stable up to a critical value of the unique stability

parameter, which depends on the vibrational field. In this paper, it is shown that high-frequency vertical oscillations can

delay convective instabilities and, in this way, reduce the convective flow. The isotherms are oriented perpendicular to

the axis of vibration. In the case where the direction of vibration is perpendicular to the temperature gradient, small

values of the Grashof number, the stability parameter, induce the generation of an average convective flow. When the

aspect ratio is large enough, the character of the bifurcation is practically the same as in the limiting case of an infinitely

long layer.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibrations are known to be among the most effective

ways of affecting the behaviour of fluid systems, in the

sense of increasing or reducing the convective heat

transfer. Most of the material in this paper is devoted to

the case of high-frequency vibration (i.e., when the

period of vibration is much smaller than the reference

hydrodynamic times and the displacement amplitude is

smaller than the height of the cell). We focus our
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attention on the case where a container filled with a fluid

heated from below is subjected to arbitrary high-

frequency vibrations. The description of the thermo-

vibrational flows in the limiting case of high-frequency

and small amplitude of vibrations may be effectively

obtained in the frame of the averaging method, which

leads to the system of equations for averaged fields of

velocity, pressure and temperature. Simonenko et al.

[1,2], were the first to use this method and propose the

time-averaged form of the Boussinesq equations. Sub-

sequently, it was demonstrated that high-frequency

vibrations are most relevant in modifying stability

characteristics. Gershuni and Zhukhovitskii [3] intro-

duced the vibrational analogue of the Rayleigh Number,

Rav, to represent the intensity of the vibrational source.
ed.
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Thus, for an infinite fluid layer in weightlessness (i.e.,

when the static gravity is absent), only the specific

thermovibrational mechanism is responsible for insta-

bility excitation and quasi-equilibrium is possible. They

studied the effects of vibration angle and the interaction

between natural and thermovibrational convection. The

configuration corresponding to a horizontal layer heated

from below or from above under longitudinal vibra-

tion is considered by Braverman and Oron [4] and by

Gershuni and Zhukhovitskii [3]. They show that the

state of quasi-equilibrium becomes unstable when the

vibrational Rayleigh number exceeds some critical value

which depends on the boundary conditions at the par-

allel planes bounding the fluid layer. At a given a (angle

between axis of vibration and isothermal surfaces), the

neutral curve RavðkÞ assumes a minimum at some kc
which determines the wave number of the most dan-

gerous perturbation. The corresponding value Ravc
yields the equilibrium stability border. The numerical

calculation implies that the stability is minimal for lon-

gitudinal vibrations for Ravc ¼ 2129 and kc ¼ 3:23. The
critical value of the vibrational Rayleigh number in-

creases monotonically with the angle of inclination of

the vibration axis. When a ! p
2
, they found Ravc ! 1

and kc ! 0. In the presence of static gravity, the onset of

convection is caused by both thermovibrational and

thermogravitational mechanisms. Several examples

involving both mechanisms were presented by Gershuni

and Zhukhovitskii [5] and later by Braverman and Oron

[4]. The experimental results given by Zavarykin et al. [6]

are in good agreement with the theoretical ones.

Thermovibrational convection in an enclosure has long

been investigated during the last decade due to its

extensive applications in engineering, like solar energy

systems, electronic cooling equipment or crystal growth

processes. There are many practical problems of natural

convection in an enclosure which are caused by non-

periodic (accelerating–decelerating) or periodic (har-

monic vibration) motion. In the past, Richardson [7]

reviewed the effects of sound and wall vibration on heat

transfer. Forbes et al. [8] conducted experiments to

investigate the enhancement of thermal convection heat

transfer in a liquid-filled rectangular enclosure by

vibration. The results showed that the vibration fre-

quency and acceleration were the dominant factors that

affected heat transfer.

Using the time averaged method, Gershuni and

Zhukhovitskii [5] studied the vibrational thermal con-

vection under weightlessness in a rectangular, cylindrical

enclosure and a heated cylinder in an unconfined fluid.

Due to the high frequency assumption, many important

phenomena, like the resonant state and the detailed

variation of the heat transfer rate could not be investi-

gated. However, Yurkov [9] directly solved the Bous-

sinesq-approximated governing equations to study the

thermal convection induced by finite-frequency vibra-
tion under weightless conditions. From the results of

the average Nusselt number, the parametric resonant

phenomenon was found. A more exhaustive study was

carried out by Fu and Shieh [10] to investigate the effects

of the vibration frequency and Rayleigh number on the

thermal convection in the enclosure. The vibration fre-

quency was varied from 1 to 104 and three different

values of the Rayleigh number were considered.

According to the results, thermal convection can be di-

vided into five regions: (i) quasi-static convection, (ii)

vibration convection, (iii) resonant vibration convection,

(iv) intermediate convection and (v) high-frequency

vibration convection. When the Rayleigh number is

large enough, (Ra ¼ 106), gravitational thermal convec-

tion dominates, and the vibration motion does not

markedly enhance the heat transfer rate. In contrast, in

the low Rayleigh number (Ra ¼ 104) case, except in the

quasi-static convection region, the vibration thermal

convection is dominant, and the vibration enhances the

heat transfer significantly. So, Gershuni et al. [11], in

studying the structures of the flows, report that the

transition from the basic to a multicellular flow sets in at

a critical value of the Rav. When the aspect ratio equals

8 or more, the character of the bifurcation is practically

the same as in the limiting case of an infinitely long

layer. The latter statement was confirmed by Khallouf

et al. [12], Liz�ee [13], Bardan et al. [14] for a binary

mixture when they studied the non-linear regimes of

two-dimensional thermovibrational convection in rect-

angular cavities subjected to a longitudinal temperature

gradient and transversal axis of vibration. It was shown

that the transition from a four-vortex regime to inver-

sional symmetry took place at some critical value of Rav.
This value increased monotonously as the aspect ratio

AL increased. Thus, when AL � 4, the limiting case of

rest with conductive heat transfer occurred.

All these previous results were of great help for

understanding the g-jitter effects during fluid and mate-

rial science microgravity experiments. On available

space platforms, a systematic characterization of the

accelerations has shown that the microgravity environ-

ment is dynamic, depending on many sources, e.g.,

aerodynamic forces, on-board machinery, crew opera-

tions or servicing activities. It is recognized that the

presence of g-disturbances may cause strong discrepan-

cies, and so, the fluid science processes may be sub-

stantially changed by g-disturbances. To reduce the

convective contributions of these g-jitters, it is conve-

nient to consider acceleration fields as an expansion of

harmonic oscillations, and to use a time-averaged

method formulation. Previously, there have been many

studies on thermal convection in a gravitationally

modulated fluid layer with rigid, isothermal boundaries

heated from below or from above, see Gresho and Sani

[15], Rosenblat and Tanaka [16]. Biringen and Dana-

basoglu [17] studied the effects of gravity modulation in



Fig. 1. Geometrical configuration and axis of coordinates.

Sketch of the cavity configuration.
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a thermally driven rectangular enclosure for terrestrial

and microgravity environments. The results showed that

the destabilizing and stabilizing effects of gravity mod-

ulation agreed with the theories of Gresho and Sani [15].

More recently, Monti and Savino [18,19] performed a

numerical simulation of non-linear problems of TVC

(thermovibrational convection) with reference to typical

fluid science experiments on the space station. They

established that the flow field is in general 3D, because

of end wall effects and the heat exchange with the sur-

roundings through the lateral walls (not perfectly insu-

lated). In the case of g-jitter, we have to deal with

multifrequency vibrations spanning the interval from

10�1 to 103, and here too, a time averaged formulation is

necessary in order to reduce the computation time.

Savino et al. [20] have also studied a three-dimensional

TVC in a closed cell filled with liquid, with an initial

linear temperature and a g-jitter orthogonal to the

density gradient. They revealed that the time-averaged

convective motion due to thermovibrational effects

arises because of non-linear coupling between density

and acceleration oscillations. The 3D numerical results

presented in their work in terms of velocity and tem-

perature fields are helpful for the design of microgravity

experiments and to evaluate the range of validity of the

two-dimensional assumption invoked in previous cal-

culations.

Our study concerns the effects of vibration in a finite

rectangular box filled with fluid. Our aim is to under-

stand the effects of g-jitter on this problem. We also deal

with an unbounded layer filled with fluid subjected to a

horizontal or vertical vibrational field. We restrict our

work to the case of a pure fluid but we add the influence

of arbitrary angles of vibration. In studying the equi-

librium conditions, we have found general equations for

the quasi-equilibrium and equilibrium states. According

to the boundary conditions applied to different geome-

tries, it is possible to know if quasi-equilibrium or

equilibrium exists. Many of our stability results are

concerned with a vibrational parameter which depends

only on the vibrational effects (i.e., it does not depend on

temperature difference). In comparison with previous

works which deal with the vibrational Grashof number,

the use of this specific parameter permits a better

understanding of the vibrational effects on convective

flows. Numerical computations have been performed,

too, in order to foresee the theoretical results.
2. Problem description and basic equations

We consider two-dimensional thermovibrational

convection in a container of height H and length L. Fig.
1 represents the flow configuration and coordinates

system. The flow domain is ðx; zÞ 2 X ¼ ½0; L� � ½0;H �.
All the physical properties are taken to be constant. The
horizontal walls at z ¼ 0 and z ¼ H are kept at constant

and uniform temperatures h1 and h2, respectively. The
situation where h1 > h2 is adopted. The vertical walls (at
x ¼ 0 and x ¼ L) are insulated. All the boundaries are

assumed rigid. The fluid cavity with its boundaries is

subjected to linear harmonic oscillations.
2.1. The mathematical model

The fluid in the cavity is considered to be Newtonian

and to satisfy the Boussinesq approximation. The

thermophysical properties are constant except for the

density in the buoyancy term which depends linearly on

the local temperature. The equation of state has the

form (1).

qðhÞ ¼ qref 1ð � bhðh� hrefÞÞ ð1Þ

where qref ¼ qðhrefÞ is the density at standard tempera-

ture href ¼ h2 and bh ¼ �1
qref

oq
oh the thermal expansion

coefficient. By introducing the appropriate coordinates

connected with oscillating systems, the gravitational

field is replaced by the sum of the gravitational and the

vibrational acceleration (2) in the momentum equation.

g ! g� bx2 sinðxtÞ k ð2Þ

where k ¼ cos axþ sin az is the unit vector along the

axis of vibration and a ¼ ðx; kÞ is the angle of vibration,
b is the displacement amplitude and x the angular fre-

quency.

These hypotheses lead to the following dimensionless

conservation equations for mass (3), momentum (4) and

energy (5), with the Boussinesq approximation. Using

the velocity u, the pressure p and the temperature h as

independent variables, the non-dimensional equations

of the Boussinesq model are

r � u ¼ 0 ð3Þ
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ou

ot
þ ðu � rÞu ¼ �rpþr2uþGr h zþGrv h x̂ sinðx̂tÞ k

ð4Þ

oh
ot

þ ðu � rÞh ¼ 1

Pr
r2h ð5Þ

In the above equations, using the viscous diffusion

time as the time-scale factor, lengths are non-dimen-

sionalized by H , velocity by m
H (m is the kinematic diffu-

sivity), time by H2

m , x by m
H2 and temperature relative to h2

by h1 � h2. In line with the problem description, the

corresponding non-dimensional forms of the boundary

conditions are (6)–(9).

u ¼ 0 on oX ð6Þ

h ¼ 1 for z ¼ 0; 8x ð7Þ

h ¼ 0 for z ¼ 1; 8x ð8Þ

oh
ox

¼ 0 for x ¼ 0 and AL; 8z ð9Þ

The problem includes five non-dimensional numbers;

the Grashof number Gr ¼ gbhðh1�h2ÞH3

m2 , the modified

vibrational Grashof number Grv ¼ bxbhðh1�h2ÞH
m , the pul-

sation x̂ ¼ x H2

m , the Prandtl number Pr ¼ m
a (a is the heat

diffusivity) and the aspect ratio AL ¼ L
H. The modified

vibrational Grashof number is obtained by substituting

g by bx2 in the Grashof number and rescaling by the

ratio between the viscous diffusive time and the vibra-

tional time H2=m
1=x . In the limit of high-frequency and low

amplitude, the effect of vibration is then determined by

the product bx which appears in the definition of the

modified vibrational Grashof number Grv.
2.2. The averaged flow equations

In the asymptotic case of high-frequency oscillations

where the period of the displacement s ¼ 2p
x is very low

compared to the characteristic times of thermal and

kinematic diffusion (s � H2

a and s � H2

m ) the application

of the averaging method of Simonenko [2] only allows

the mean flow and mean temperature to be solved (see

[21]).

Let us introduce the additional variable W which

forms the solenoidal part of the temperature field con-

tribution to the gravitational force and rn its conser-

vative part in the following Helmholtz decompositions

(10) and (11).

T k ¼ Wþrn ð10Þ

r �W ¼ 0 ð11Þ

The mean motion is then determined by (12)–(16).

r �U ¼ 0 ð12Þ
oU

ot
þ ðU � rÞU ¼ �rP þr2Uþ GrT z

þ 1

2
Gr2vW � r Tkð �WÞ ð13Þ

oT
ot

þ ðU � rÞT ¼ 1

Pr
r2T ð14Þ

rT ^ k ¼ r ^W ð15Þ

r:W ¼ 0 ð16Þ

The boundary conditions are in accordance with the

physical statement of the problem being (6)–(9) and (17):

W � n ¼ 0 on oX ð17Þ

where n is the outside normal vector.
3. Linear stability

3.1. Mechanical equilibrium

An equilibrium solution in presence of an oscillating

force is possible only under certain conditions of heat

input and cavity shape. In this case, the time averaged

body force is compensated by the pressure gradient. The

question is whether the state of mechanical quasi-equi-

librium (i.e., the state at which the mean velocity is zero,

but the pulsational component is not in general) exists or

not in our situation. In order to prove the existence of a

pure conductive solution of the systems (12)–(16), we

substitute U ¼ Uxxþ Uzz ¼ 0 and o
ot ¼ 0, the equilibrium

fields T ¼ T0, W ¼ W0 and P ¼ P0 in this system and

seek a valid solution for arbitrary values of the non-

dimensional parameters. The following system (18)–(21)

is obtained:

�rP0 þ GrT0 zþ
1

2
Gr2vW0 � r T0kð �W0Þ ¼ 0 ð18Þ

DT0 ¼ 0 ð19Þ

rT0 ^ k ¼ r ^W0 ð20Þ

r �W0 ¼ 0 ð21Þ

with the boundary conditions (22)–(25):

T0 ¼ 1 for z ¼ 0; 8x ð22Þ

T0 ¼ 0 for z ¼ 1; 8x ð23Þ

oT0
ox

¼ 0 for x ¼ 0 and AL; 8z ð24Þ

W0 � n ¼ 0 on oX: ð25Þ

Eq. (19) with boundary conditions (22) and (23) lead

to T0 ¼ 1� z. Applying the curl to Eq. (18), we obtain

the vibrational hydrostatic condition (26):

r W0 � kð Þ ^ r T0 ¼ 0 ð26Þ
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The equilibrium follows from (19)–(21) and (26) when

supplemented by the corresponding boundary condi-

tions (specification of temperature and the requirement

that W0 � n vanishes on the cavity walls). Using the sys-

tem of partial differential Eqs. (20)–(26), we can find the

solenoidal vector W0 as indicated below:

W0 ¼ W0xxþW0zz where ð27Þ

W0x ¼ � 1

2
sinð2aÞ x cos að þ z sin aÞ � c1x sin a

þ c1z cos aþ c ð28Þ

W0z ¼ cos2ðaÞ x cos að þ z sin aÞ
þ c1x cos aþ c1z sin aþ c0 ð29Þ

c1, c, c0 are integration constants. We specify that, in this

general solution W0, the boundary conditions (25) are

not taken into account.

3.1.1. Horizontal layer

Let us consider the problem of mechanical quasi-

equilibrium stability for an infinite plane layer bounded

by two parallel rigid plates z ¼ 0 and 1. Taking

boundary conditions (25) into account, the values of W0x

and W0z (28), (29) lead to the following quasi-equilibrium

solution

W0 � z ¼ 0 for z ¼ 0 and z ¼ 1: ð30Þ

T0 ¼ 1� z ð31Þ

and

ox0x

oz
¼ � cos a ð32Þ

In this case, the solenoidal field is longitudinal. We

suppose that the net flux of this field is equal zero, i.e.R z¼1

z¼0
W0 � xdz ¼ 0 which leads to:

T0 ¼ 1� z ð33Þ

W0z ¼ 0 ð34Þ

W0x ¼
1

2

�
� z
�
cos a ð35Þ

This solution for W0 has already been found by

Gershuni and Lyubimov [21]. Therefore, we can con-

clude that quasi-equilibrium exists for an infinite plane

layer subject to arbitrary angles of vibration.

3.1.2. Rectangular cavity

This situation is markedly different from that men-

tioned above. For arbitrary values of a (a 6¼ p
2
), the

quasi-equilibrium solution or the equilibrium solution

are not possible and the thermovibrational convective

flow sets in at infinitely small values of temperature

difference. In fact, if boundary conditions (25) are taken

into account in Eqs. (28) and (29), we have an equilib-
rium solution only for a ¼ p
2
. This equilibrium state

under vertical vibration exists independently of the

Grashof and vibrational Grashof number. Conse-

quently, we will deal with arbitrary angles of vibration

for an unbounded layer but only with vertical vibration

for a container. In both cases, quasi-equilibrium or

equilibrium solutions exist.

3.2. Stability of the equilibrium solution

In the following we write Gv ¼ 1
2
Gr2v and refer to it as

the vibrational Grashof number.

It is convenient to rewrite mean field Eqs. (12)–(16)

as evolution equations for two-dimensional perturba-

tions about this equilibrium state. We denote these

perturbations by (U0; P 0; T 0;W0) and introduce the fol-

lowing streamfunction representations

U 0
x ¼ � ow0

oz
and U 0

z ¼
ow0

ox
ð36Þ

W 0
x ¼ � o/0

oz
and W 0

z ¼ o/0

ox
ð37Þ

As a result a positive streamfunction corresponds to

a clockwise cell i.e. U0 ¼ curlðw0yÞ.

3.3. Horizontal layer with arbitrary angle of vibration

Considering the mean field Eqs. (12)–(16), replacing

the expressions U 0
x, U

0
z, W

0
x , W

0
z defined in (36) and (37),

and taking the curl of Eq. (13), the resulting equations

are

o

ot

Dw0

T 0

0

0
B@

1
CA

¼

D2 Gr
o

ox
�Gv

o2

ox2

o

ox
D
Pr

0

0
o

ox
�D

0
BBBBBB@

1
CCCCCCA

w0

T 0

/0

0
B@

1
CA

þ
N1ðw0;w0Þ
N3ðw0; T 0Þ

0

0
B@

1
CAþ Gv

N1ð/0/0Þ � N2ð/0 T 0Þ
0

0

0
B@

1
CA

þ Gv

1

2

�
� z
�
cos a

o

ox
D/0 � oT 0

ox

� �
0

0

0
BBB@

1
CCCA ð38Þ

where for all pairs ðf ; gÞ of real functions

N1ðf ; f Þ ¼
of
oz

o3f
oxoz2

�
þ o3f

ox3

�
� of

ox
o3f
ox2oz

�
þ o3f

oz3

�
ð39Þ
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N2ðf ; gÞ ¼
o2f
oxoz

og
ox

þ of
oz

o2g
ox2

� o2f
ox2

og
oz

� of
ox

o2g
oxoz

ð40Þ

N3ðf ; gÞ ¼
of
oz

og
ox

� of
ox

og
oz

ð41Þ

The associated boundary conditions are

ow0

oz

 !
z¼0;1

¼ w0
� �

z¼0;1
¼ 0 ð42Þ

ðT 0Þz¼0;1 ¼ 0 ð43Þ

ð/0Þz¼0;1 ¼ 0 ð44Þ
3.3.1. Analytical results

The resulting linear problem is solved by means of a

Galerkin method using the following expansions

w0 ¼
XN
i¼1

aiðz� 1Þ2ziþ1eIkxeIXht ð45Þ

T 0 ¼
XN
i¼1

biðz� 1ÞzieIkxeIXh t ð46Þ

/0 ¼
XN
i¼1

ciðz� 1ÞzieIkxeIXht ð47Þ

where Xh and k are real numbers, I ¼
ffiffiffiffiffiffiffi
�1

p
and i 2 IN .

For an unbounded layer, the truncation used (N ¼ 4)

predicts that Rac ¼ PrGrc ¼ 1708:549 and kc ¼ 3:116.
This result is in good agreement with the result (Rac ¼
PrGrc ¼ 1707:762) found by Reid and Harris [22]. Fig. 2
Fig. 2. (a) Stability borders in the plane (Ra, Pr2Gv) for different inclin

in the plane (Ra, Pr2G�
v) for different inclination angles of the vibration

i.e. bx2 ! 1 the system will have a behaviour closer and closer to t

a ¼ p
2
).
presents the linear stability results for vibration at angle

a. In Fig. 2(a) we recover the results of Gershuni and

Lyubimov [21]. The critical point on the Ra ¼ PrGr axis
is the solution of the classic Rayleigh–B�enard problem.

This critical Rayleigh number Rac ¼ 1708 is connected

with the most dangerous perturbation of the wave-

number kc ¼ 3:116. This point on the PrGv axis corre-

sponds to the case of pure weightlessness. In the range of

inclination angles, the stability curves intersect the PrGv

axis and go to negative Ra. For Gershuni and Lyubimov

[21], this means that instability occurs when a system is

heated from above. In order to understand what can

happen on earth, we propose a new formulation which

will be adapted with an experiment. In an experiment on

earth we can start in the static case Gv ¼ 0, increase the

parietal temperature gradient DT and reach the critical

Rayleigh number at which convection occurs. Then, for

a fixed value of PrGv, we do the same and increase DT
from 0 to its critical value corresponding to the onset of

convection. For a sufficiently large fixed value of PrGv ,

the convection seems to occur at the beginning of the

experimentation i.e. for Ra ¼ 0. As Ra ¼ Pr gbhðh1�h2ÞH3

m2

this means on earth that DT ¼ ðh1 � h2Þ ¼ 0 and it fol-

lows by definition that Gv ¼ 0. This is in contradiction

with the fact that we can always impose a value of PrGv

and then increase DT . The problem comes from the

formulation as both Ra and PrGv depend on DT . By

setting Gv ¼ G�
v:Gr

2 with G�
v ¼ 1

2
b2x2m2

g2H4 , the new adimen-

sional vibrational parameter G�
v no longer depends on

DT . Fig. 2(b) presents the same stability borders but in

the plane ðPrGr; PrG�
vÞ. This formulation is then adapted

to an experimentation on earth. Moreover, a particular
ation angles of the vibration axis (see [21]). (b) Stability borders

axis. In the limiting case of high intensity of the vibrational field

he one it would have under zero-gravity conditions (except for
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angle of vibration is clearly shown. As one can see on

Fig. 2(b), the stability borders for vertical vibrations

(a ¼ p
2
) are markedly different from the others. For

06 a6 ac where ac ¼ 27p
100
, Rac decreases with respect to

G�
v and Rac ! 0 when G�

v ! 1. For ac 6 a < p
2
, Rac first

increases then decreases with respect to G�
v but finally

Rac ! 0 when G�
v ! 1. For a ¼ p

2
, Rac increases with

respect to G�
v and Rac ! 1 when G�

v ! 1. This differ-

ent behaviour could be linked with the vertical sidewall

effects in the presence of vibration. We have seen that

mechanical quasi-equilibrium exists only for vertical

vibration in a rectangular cavity, whereas it always exists

for unbounded layers. This shows that, with vibration,

an unbounded layer cannot exactly represent the physics

of a very large rectangular cavity. In the following, we

will keep the formulation in Gv as it is now classic (see

the bibliography) in the studies of thermovibrational

convection.

3.3.2. Stationary or oscillatory threshold

In the static case, the linear stability problem is

determined by the product PrGr which defines the

Rayleigh number Ra ¼ PrGr. Moreover, the linearized

Eq. (38) are self-conjugated and the principle of stabil-

ity exchange applies i.e. only steady state bifurcations

occur.

With vibration, the linearized Eq. (38) are not self-

conjugated and we cannot demonstrate that the bifur-

cations are always stationary. Nevertheless, for all the

following results we have verified that no Hopf bifur-

cation occurs and Xh is found to be a pure imaginary

complex in each case we have solved. We should men-

tion that the associated Grashof number and also Xh

strongly depend on the Prandtl number and the product

PrGr is not relevant for the oscillatory regime. To con-

clude, with vibration, only steady state bifurcations

occur in the range of parameters (Pr, Gv) which we use in

the following. In the framework of stationary bifurca-

tions, the linear stability problem is, as in the static case,

determined by Ra ¼ PrGr and Rav ¼ PrGrv. Within this

formulation in Rayleigh number Ra, the Prandtl number

Pr does not appear explicitly in the linear stability

analysis except for Hopf bifurcation but we have seen

there are none.

Nevertheless, we keep the formulation in terms of

Grashof number Gr because it will be shown in the

weakly non-linear analysis that the formulation in

Rayleigh number is not sufficient to explicitly eliminate

the Prandtl number.

3.4. Rectangular cavity and vertical vibration

For a cavity, the perturbation equations are also

given by (38) but a must be set to a ¼ p
2
.

At the boundaries of the cavity the streamfunctions

vanish and thus
ow0

ox

 !
x¼0;AL

¼ ow0

oz

 !
z¼0;1

¼ w0
� �

oX
¼ 0 ð48Þ

T 0
z¼0;1 ¼

oT 0

ox

� �
x¼0;AL

¼ 0 ð49Þ

ð/0ÞoX ¼ 0 ð50Þ

In this case, we use the following expansions

w0 ¼
XN
i¼1

XM
j¼1

aijðx� ALÞ2xiþ1ðz� 1Þ2zjþ1eIXh t ð51Þ

T 0 ¼
XM
j¼1

b0jðz� 1ÞzjeIXht þ
XN
i¼1

XM
j¼1

bij

� x
iþ 2

�
� AL

iþ 1

�
xiþ1ðz� 1ÞzjeIXh t ð52Þ

/0 ¼
XN
i¼1

XM
j¼1

cijðx� ALÞxiðz� 1ÞzjeIXh t ð53Þ

where Xh is a real number, I ¼
ffiffiffiffiffiffiffi
�1

p
and ði; jÞ 2 IN 2.

Equation (38) with boundary conditions (48)–(50)

are invariant under two reflections. These operations are

described by the operators Sx, Sz and So ¼ SxSz defined
by

Sx
w0

T 0

w0
1

0
@

1
A x; zð Þ ¼

�w0

T 0

�w0
1

0
@

1
A ALð � x; zÞ ð54Þ

Sz
w0

T 0

w0
1

0
@

1
A x; zð Þ ¼

�w0

�T 0

�w0
1

0
@

1
A x; 1ð � zÞ ð55Þ

So
w0

T 0

w0
1

0
@

1
A x; zð Þ ¼

w0

�T 0

w0
1

0
@

1
A ALð � x; 1� zÞ ð56Þ

The different reflections Sx, So, Sz verify the relations

S2
x ¼ Id, S2

z ¼ Id and S2
o ¼ Id. The representation C of

the group Z2 � Z2 is C � fId; Sx; Sz; Sog, where Id is the

identity operator and this group plays an important role

in the bifurcation analysis described below. In the

presence of this group, the conduction state can lose

stability and bifurcate to one specific solution which

possesses either So-symmetric, Sx-symmetric, Sz-sym-

metric or has all the symmetry properties. The resulting

bifurcations are pitchforks except for the last case.

Without vibration, it is known that Sz-symmetric solu-

tions are always unstable and result from at least a

second primary bifurcation. The first two primary

bifurcations are supercritical pitchforks with either

So-symmetric or Sx-symmetric solutions [23]. The Sx-
symmetric eigenmodes contain an even number of rolls

in the x-direction, whereas the Sz-symmetric ones con-

tain an even number of rolls in the z-direction. The



Fig. 3. Critical Rayleigh number Rac of the neutral modes So
and Sx vs. the aspect ratio AL. Comparison with the results of

Mizushima and also with an unbounded layer in the static case.

For AL < AL1 So-symmetric one-cell flow, for ALi < AL < ALiþ1

ðiþ 1Þ-cell flow which is So- symmetric for i odd or Sx-sym-

metric for i even.
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So-symmetric eigenmodes contain an odd number of

cells in both directions. The eigenmodes which possess

all the symmetry properties contain an even number of

cells in both directions. For the first primary bifurcation,

the eigenvector could be either Sx-symmetric or So-
symmetric. Moreover, for second primary bifurcation,

the eigenvector could be either Sz-symmetric or have all

the symmetry properties (So, Sx and Sz) but this solution
could not be observed as it remains unstable almost

without vibration.

MAPLE and MATLAB were used to find the values

of Rac, Xhc, aij, bij and cij at which a bifurcation occurs.

The choice of the truncation used (N ¼ 6 and M ¼ 6)

for a square cavity is linked with the results of Mizu-

shima [23] who studied the static case. When the rect-

angle is long, it is convenient to take more test functions

in the ðOxÞ direction in order to get a better convergence

of the solution. For example, for AL ¼ 5, we took

N ¼ 11 and M ¼ 6 (see Tables 1 and 2). The numerical

computations confirm this choice. As shown in Fig. 3,

our results are in good agreement with those of Mizu-

shima [23].

Before presenting the influence of a vibrational field,

it is worthwhile to recall the following well-known re-

sults concerning the static case. As previously men-

tioned, the conductive solution can lose stability to four

different states that have different symmetry properties.

The neutral curves of modes which have the same

symmetry do not intersect. This repulsion of the eigen-

values was discussed by the stability of paths of sym-

metry-breaking bifurcations by Crawford and Knobloch

[24]. In fact, the mode which occurs (first primary

bifurcation) is either So- or Sx-symmetric. The corre-

sponding two neutral curves are plotted in Fig. 3. The

aim of this study is to understand how the vertical

vibrations will affect these neutral curves. For different

values of PrGv, the graphs of the two first primary

bifurcation points are shown in Fig. 4. The values of ALi

are given in Table 3.
Table 1

Convergence with increasing N and M

N �M 2� 2 3� 2 3� 3

Rac1 2804.1 2798.0 2645.7

Rac2 7806.0 7806.0 7672.4

Critical Rayleigh number Rac of the neutral modes So (Rac1 ) and Sx (

Table 2

Convergence with increasing N and M

N �M 2� 2 3� 2 3� 3 4� 4 5

Rac1 4532.2 2729.1 2733.5 2663.3 2

Rac2 14602.5 7556.6 4527.3 4144.7 2

Critical Rayleigh number Rac of the neutral modes So (Rac1 ) and Sx (
We note, in Fig. 4, the influence of vertical vibrations

on the critical Grashof number. Indeed, the value of

critical Grashof number increases with the intensity of

vibrations. The conductive solution stays steady for

greater temperature differences. The vibrations act both

on the stability threshold and on the nature of the flow.

We note effectively that the difference jALiþ1
� ALi j rises

with the intensity of vibrations. This distance corre-

sponds to the wavelength of the flow in an infinite

layer. The stability thresholds translated up and dilated

horizontally. Consequently, when the vibrations are

not present and considering an aspect ratio of 5, we
4� 4 5� 5 6� 6

2586.9 2586.1 2585.0

6752.0 6750.4 6742.5

Rac2 ) vs. the couple N �M for Pr ¼ 1, Gv ¼ 0 and AL ¼ 1.

� 5 6� 6 8� 6 10� 6 11� 6

126.3 1861.8 1804.2 1780.3 1778.2

208.0 2122.0 2021.3 1920.7 1917.8

Rac2 ) vs. the couple N �M for Pr ¼ 1, Gv ¼ 0 and AL ¼ 5.



Fig. 5. Bifurcation diagram in the Nu–Gr plane for Pr ¼ 1,

AL ¼ 2 and vertical vibration. Along the two branches plotted

for Gv ¼ 0 and 2000, the flow is bicellular, whereas for Gv ¼
5000 the flow pattern is monocellular.

Fig. 4. Critical Rayleigh number Rac of the neutral modes So and Sx vs. the aspect ratio AL. We also add the results concerning an

unbounded layer. The vertical vibrations increase the value of the critical Rayleigh number.

Table 3

Critical aspect ratios ALi where the two modes So- and Sx-
symmetric exchange for PrGv ¼ 0, PrGv ¼ 200 and PrGv ¼ 800

PrGv 0 200 800

AL1
1.64 1.65 1.70

AL2
2.68 2.76 2.86

AL3
3.72 3.80 4.01
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note a convective flow with five rolls. For Gv ¼ 200, AL4

stays below five and the onset of convective flow

still begins with five rolls. Unlike when the intensity of

vibration is increasing (Gv ¼ 800), the horizontal trans-
Fig. 6. Stability curves of critical Grashof number Grc vs. the

aspect ratio AL for Gv ¼ 0, 800, 2000, 4000, 6000. Each bifur-

cation point is determined on the base of the numerical results

obtained for the finite amplitude regimes. We note the influence

of vertical vibrations as predicted by theoretical results. Inset:

Influence of vibrations on distances jALiþ1
� ALij. Numbers ALi

are relative to the intersection points of the symmetry modes So
et Sx. These distances increase with the intensity of vibrations

and are related to the vibrational Grashof number by the linear

evolution law: jALiþ1
� ALij¼ 0:0001 Gv þ 1:1:
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lation on the right of AL4
due to vibrations is suffi-

cient for AL4
to be greater than five. So, we can con-

clude that the setting off of the convective motion is

characterized by a four-roll regime. These results are

confirmed by the numerical results (Figs. 5 and 6). Each

point in Fig. 6 was obtained by plotting the complete

bifurcation diagram as in Fig. 5 and noting the value

of Rac.
4. Computations of finite amplitude regimes

4.1. Numerical method

The system of Eqs. (12)–(16) was solved numeri-

cally using a spectral method. This is based on the

projection–diffusion algorithm developed for solving

the 2D–3D unsteady incompressible equations [25]. Its

interest is to circumvent the difficulty posed by the

gradient pressure at the borders of the cavity. Temporal

integration consists of a semi-implicit second-order

finite difference approximation. The linear (viscous)

terms are treated implicitly using a second-order back-

ward Euler scheme, while a second-order Adams–

Bashforth scheme is employed for the nonlinear

(advective) parts. When applied to an advection–diffu-

sion equation such as

of
dt

þU � rf ¼ aDf ð57Þ

the method leads to

3
2
f nþ1 � 2f n þ 1

2
f n�1

dt
¼ aDf nþ1 � 2ðU � rf Þn � ðU � rf Þn�1

ð58Þ

This equation can be written in the following form of

the Helmholtz equation

ðD� hÞf nþ1 ¼ s ð59Þ

where h ¼ 3
2adt is the Helmholtz constant and s is a scalar

quantity containing all the terms known at time tn ¼ ndt
(n is the time level and dt is the time step). The temporal

integration, therefore, transforms the systems into a

Helmholtz problem arising from Eq. (14) coupled to the

Poisson problems (15), (16) with appropriate boundary

conditions. Eqs. (12) and (13) are transformed into a

generalized Stokes problem and solved by the projec-

tion–diffusion method of Khallouf [26]. All the sub-

problems obtained are either Helmholtz or Poisson-like

operators. A spectral method, namely one utilizing

Legendre collocation points, is used in the spatial dis-

cretization of the Helmholtz and Poisson-like operators.

Successive diagonalization is implemented to invert

these operators. We mention that the Stokes and Darcy–

Euler solvers are direct and guarantee an accurate
spectral solution with divergence-free solenoidal fields

over the entire domain, including the boundaries.

4.2. Vertical vibration

Fig. 5 represents the Nusselt vs. the Grashof number

for Pr ¼ 1 and AL ¼ 2. As Gv increases, the stability

threshold increases too. Hence, vertical vibrations have

a stabilizing effect on convective flow. As the first pri-

mary bifurcations are supercritical pitchforks with either

So-symmetric or Sx-symmetric solutions, a weakly non-

linear analysis arround the bifurcation point shows that

Nu ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGr � GrcÞ

p
where K is a constant which depends on Gv [14]. For

each value of Gv, as Nu2 ¼ KðGr � GrcÞ, a simply

extrapolation technique allows us to determine an

accurate value of Grc. We use the finite amplitude results

to plot the Fig. 6.

Fig. 6 computed for Gv ¼ 0, 800, 2000, 4000 and 6000

represents the analogue of Fig. 4 which summarizes

the theoretical results. The numerical results confirm all

the theoretical ones. With the vibrations, the curves

are translated up and dilated horizontally. This means

that the vertical vibrations delay the onset of the con-

vection and have a stabilizing effect on the convective

flow. We can better understand the dilating effect due

to vibrations by looking at the inset in Fig. 6. This

shows that the critical distance jALiþ1
� ALij is a linear

function of the vibrational Grashof number and, con-

sequently, the distance increases with the intensity of

vibrations.

4.3. Imperfect bifurcation

We deal now with an inclination of the axis of

vibration from the vertical (Fig. 7). Computations were

performed for a rectangular cavity (AL ¼ 2) for (Gv ¼ 0,

2000, 5000, 10,000 and 20,000). Our previous prediction,

given by the linear theory in which there is no conduc-

tive solution when the axis of vibration diverges from

the temperature gradient, is confirmed here. Indeed, for

a ¼ p
2
� 1

100
and when the intensity of vibrations increases

(Gv ¼ 2000), we can observe quasi-conductive motion or

weak convection in the cavity. The deviation of the

stability curve drawn for (Gv ¼ 2000, 5000, 10,000,

20,000) from the stability curve (Gv ¼ 0) proves that

there is no equilibrium solution for a 6¼ p
2
. This is an

imperfect bifurcation scenario. When the vibrational

Grashof number increases markedly and attains a criti-

cal vibrational Grashof number, the critical Grashof

number begins to diminish in comparison with the pre-

vious results. This shows that, at a certain value of

intensity of vibration, the vibrations have a destabilizing

effect on the convection.



Fig. 7. Influence of a small deviation from the special case of

vertical vibration. Bifurcation diagram in the Nu–Gr plane for

Pr ¼ 1, AL ¼ 2 and a ¼ p
2
� p

100
.
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4.4. Horizontal vibration

The results for horizontal vibrations (a ¼ 0) have

been summarized in (Fig. 8) for Pr ¼ 1 and AL ¼ 2. This
Fig. 8. Bifurcation diagram in the Nu–Gr plane for Pr ¼ 1,

AL ¼ 2 and horizontal vibration. Along all the branches plotted

for Gv ¼ 0, 2000, 3000, 3700, 5000 the flow is bicellular. The

next figure displays an enlargement around the quasi-diffusive

regime (Nu ¼ 1). Inset: enlargement around the quasi-diffusive

regime (Nu ¼ 1) for horizontal vibration. Along all the branches

plotted for Gv ¼ 0, 2000, 3000, the flow is bicellular.
kind of vibration is very effective in driving thermovib-

rational convection. This is the case of non-equilibrium.

When Gv increases for example for (Gv ¼ 2000), a small

temperature difference applied to the horizontal walls

can set off a weak convection movement. The quasi-

conductive regime generated is, therefore, destabilized

for a critical Grashof number below the stability

threshold of the conductive regime (Gv ¼ 0). The critical

Grashof number continues to decrease with increasing

vibrational Grashof number (inset Fig. 8). In micro-

gravity, a convective regime is present in the cavity and

increases with the intensity of vibrations.
5. Conclusion

The influence of vibrations of low amplitude and

high-frequency on fluid subjected to a temperature dif-

ference has been studied. In order to better understand

these effects of vibration in both intensity and direction,

we have described a theoretical and numerical study of

thermovibrational convection in an infinite layer, in a

square, and in a rectangular cavity, notably in the par-

ticular case permitting the existence of an equilibrium or

quasi-equilibrium state. We noted close agreement be-

tween the theoretical and the numerical results. In

presence of vibrations, an infinite layer cannot perfectly

represent the physical phenomena observed in very long

rectangular cavities. In fact, the wall contribution is

significant because it implies that mechanical equilib-

rium is impossible when the axis of vibrations is not

along the temperature gradient. When a 6¼ p
2
, the vibra-

tions generate a convective flow for temperature differ-

ences below those necessary for the generation of

convection in the classical Rayleigh–Benard problem.

As these vibrations are sufficiently intense, it is possible

to set off convection in a microgravity environment

(space stations). This environment is dynamic and re-

veals three-dimensionnal accelerations known as g-

jitters having frequencies varying between 10�1 and 103

Hz, which can perturb the realization of experiments like

the measurement of the Soret coefficient or the making

of pure cristals. On the other hand, when the axis of

vibration is vertical, vibrations can preserve the con-

ductive regime above the classical threshold of Ray-

leigh–Benard. We can conclude that it is possible to

generate or suppress the convective regime created by

thermal gradient by means of mechanical vibrations.

Thermal control with the use of vibrations is then pos-

sible.
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